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C Y L I N D R I C A L  S H E L L  L O A D E D  B Y  R A D I A L  F O R C E S  

A R O U N D  C I R C U L A R  R E G I O N S  
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UDC 539.3 

An approximate solution of  the problem of  a stressed-deformed state of  an infinitely long cylindrical shell 

loaded by radial forces around circular regions is constructed by the method of  asymptotic synthesis. To 

calculate normal displacement, tangential forces, and bending moments,  expressions in the form of  simple 

trigonometric series are suggested, by which the effect o f  the sizes and the quantity o f  loaded regions on the 
stressed-deformed state is studied. 

Bending of a cylindrical panel by a normal force distributed around a circular region was considered in 

[1-3 ]. Here it was assumed that there was only one loaded region and it was situated at a considerable distance 

from the ends of the panel. The solution was constructed by the method of two-dimensional Fourier transform and 

then it was reduced to tabulated Thomson functions. In the case of a small radius of the region simple asymptotic 

formulas were suggested to calculate forces and moments. 

This paper considers loading of a closed shell by a system of forces, i.e., around several circular regions 
whose centers are regularly located along the director circle of the cylinder. An approximate solution of the problem 

is constructed by the method of asymptotic synthesis (MAS) which is stated in [4, 5 ]. The solution is reduced to 

a single trigonometric series. Then, based on this solution numerical information giving an idea about the mutual 

effect of loaded regions on the value of inner force factors is analyzed. 

Being guided by M/IS, we represent a local stressed state caused by an external effect by a sum of two 
terms. The first refers to the basic state and the second expresses the so-called local end effect. We describe the 

basic state by a simplified equation of the semimomentless theory of shells written with respect to a resolution 

function O(a,  fl) [4 ]: 
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Radial displacement wb(a, fl), tangential forces T~l(a, fl), T~2(a, fl) and bending moments  ~ l (a ,  fl), 

G~2(a, fl) of the basic state are expressed in terms of a resolution function by the expressions [5 ]: 
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R 2 Off 6 ' 12 (1 - v  2) 

First we determine these quantities assuming that the outer load p(a,  fl) is a system of k radial forces (see 

Fig. 1) regularly concentrated along the director circle in section a = 0. Taking one of the forces applied at the 

point with the coordinates (0; 0), we expand the load into a series in terms of cosines 
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Fig. 1. Scheme of shell loading by radial forces P around two circular regions 

(k = 2) with radius r-- aR. 

p (a,/~) = R-1 ~ (a - 0) ~ p~ cos k ~ ,  
n=0 

(3) 

where Po = k / 2 ~ R ;  Pn = k/~rR; n E N; 6(a - 0) is the Dirac function. 
Using (3), we construct the solution of Eq. (1), which decays at lal -~ oo. Having applied the Fourier 

cosine transform, we have (neglecting the zeroth harmonics) 

~, (,~,/~) _ k ~ cos/,n~ ~ .  (,~,/,). 
g2Eh n= 1 

Here 

cos )` a d )` 
~n (a, k) = ~ 24 c2 o + ~ "~knj s 

o 

Having differentiated this solution in accordance with (2), we find the expressions for radial displacements 

and inner force factors of the basic state 

b k 5 ~ 4 
w - /_, n c o s k n f l W n ( a , k ) ;  

~t2Eh n= 1 

k 3 ~ n 2 cos) `a  d2" 

= ~2Rn=l o ; 4 + c  2(k,08 ' 
(4) 

G~l = VG~2 vk7c 2 ~ 6 - ~ n cosknflUd n ( a , k ) ;  7~2=0. 
n=l 

To obtain values of these quantities at the center of one of the circular planes of a radius aR that is uniformly 

loaded by external force P, we integrate the right-hand sides of expressions (4) with respect to a circular region 

and then multiply the results of integration by P/(:ra2R2). This transformation yields 

b 4Pk5 ~ n 4 S ( k , n , a ) ;  
w - :r3Eha 2 n= 1 

S ( k , n , a ) : ~  cosknfldfl ~ s i n ( ) , ~ ) d 2  
o o ) , ( l  4 + c  z ( k n )  8) ' 

T1 -- ~3Ra n=l 0 0 )`4 + c 2 (kn)8 ' 
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G~I vG~2 4vPk 7c2 = - -~ ~ n 6 S ( k , n , a ) .  
a n = l  

To simplify the written solutions, we then allow for the fact that [6 ] 

si__n_ax_ d x =  ~ . . _ ~ _ _ ( l _ e x p ( _ ~ ) c o s ~ ) .  
0 x (x 4 + b 4) 2b 4 

~ x s i n a x  

0 x4 -I- b 4 

2 2 3 ~ 4 2 3 4 5 sin mx  ~r x ~rx x ~ sin mx ~r x :r x + ~rx x 
- - - T -  - - -  + - - ;  ~ . . . .  �9 

m=l m 6 4 12 m=l m 90 36 48 240 

As a result we have the following expressions for radial displacement and the internal force factors for the 
basic state at the point (0; 0) 

b 
w 

2 3  4 2Pc-2 ~r~ ~ y + ~ry 1 15 
_ 

~ 2 E h a 2 k 4  36 48 240 

- k n=l n ~ 1 ~0 c~ kn~ exp ( -  fln) c~ fln dfl) ; 

~r2Rcka 2 n=l n o 

3r2k2a 2 Y - --4 y + --12 y - 

k cos kn~ exp ( -  fin) cos fin d/3 ; T 2 = 0 ; 
n = l n  0 

According to the synthesis method we supplement these results by the solutions of the equation of the local 

end effect. Written with respect to the resolution function F(a, fl) it has the form 

_ _  R 4 o4F + c - 2 e  = _ _  p ( ~ ; / ~ ) .  ( 5 )  

Oa 4 D 

above, we construct the solution of Eq. (5) decaying at l a l  --, oo using the Fourier cosine-transform. 
Allowing for expansion (3), we find 

) F (a, fl) = :r2D kR----~2 + n= 1 COS knfl  0 /14 + c - 2 "  

To obtain the components of the internal force factors T~lna(a, fl), ~2nd((a, fl), G~lnd(a, fl), Ge2nd(a, fl), we 
calculate the derivatives 
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~2 nd---v~ll nd = - - v ~  
R 2 Oa 2 ' R 

This yields the expressions 

: 2 n d _  EhkR + cosk  22 - 2  ; = ' 
:r2D n= 1 0 + c 

,,k(1 ] 22_cos dR 
n=l 0 

(6) 

which correspond to the effect of k radial forces applied in section a = 0. 

To go over to loading around circular planes, we integrate the r ight-hand side of expressions (6) with 

respect to region a 2 + f12 _< a 2, and then multiply by P/(~a2R2) .  This transformation with account for the known 

sum of the series [6 ] 

n•_ 
1 1 sin nx = x) 

=l  n 

gives the closed forms of solutions 

T~I h a = 0 ;  ~2 n a =  P ( 1 -  exp ( -  co) costo)"  
:rRa 2 

•2nd ~llnd vPc a = v = 2 exp ( -  o9) sin co ; to = 
~a  X / 2c 

(7) 

Summing up the components of the basic state and local effect, we obtain the formulas 

~ , �9 
( s )  

for calculating forces and moments at the center of the circular plane of loading. 

Then  we find the radial displacement of the local effect w end. It is represented by the zeroth harmonics in 

the expansion of the function F(a,  fl) in terms of the angular coordinate fl and under  the effect of concentrated 

forces it has the form 

end kR 2 ? cos 2a 
w - 24 -2  dR " 

2~2D 0 + c 

Changing over to circular planes of loading, we find 

end 2kPR 2 af ? cos2a  
W - -  A4 -2  dR X / a 2 - ct 2 dct. 

~r3Da 2 0 0 + c 

Here  the improper integral for 2 is tabulated [6 ] 

0 24 -1- b 4 dR - - - 2  V_,2_ b3 exp - cos--42_ + sin . 

To integrate with respect to 2 we expand the exponential function into the Maclauren series and allow for 

the fact that the integral 
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TABLE 1. Dimensionless Values of Tangential  Forces and Bending Moments at Different Values of Parameters  a 

and k for Shell with Relative Thickness h / R  = 1 /400  

0.1 

0.2 

0.3 

0.4 

a k 

2 

3 

4 

6 

2 

3 

4 

6 

2 

3 

4 

6 

2 

3 

4 

6 

Tl 

55.19 

53.15 

51.14 

47.04 

30.14 

28.05 

26.00 

21.91 

20.01 

17.96 

15.92 

11.82 

14.53 

12.48 

10.43 

6.34 

T2 
33.88 

33.88 

33.88 

33.88 

7.94 

7.94 

7.94 

7.94 

3.54 

3,54 

3,54 

3.54 

1.99 

1.99 

1.99 

1.99 

lOO l 

1.74 

1.69 

1.64 

1.55 

0.81 

0.76 

0.72 

0.62 

0.52 

0.47 

0.43 

0.33 

0.37 

0.32 

0.28 

0.18 

10oc,2 

5.50 

5.34 

5.18 

4.87 

2.71 

2.56 

2.40 

2.09 

1.73 

1.57 

1.42 

1.11 

1.23 

1.07 

0.92 

0.61 

:r/2 
f sin mtcos  2 t d t = -  
o 

is expressed in terms of the gamma-function F(z) [6 ]. Then 

end kP ~ (ab) m • w =  ) 
4:rEh ~ m=0 m ! F + 2 

x c o s - - ~ - - s i n  , b = l / v ~ .  

This expansion converges at any ab, and very quickly when ab <_ 1. In this case we can calculate w end with good 

accuracy using the asymptotic formula 

end kPb ( 1  4 x/~ l + O (a4b4) . w - 1 - - (ab) 2 + (ab) 3 
4 v ~  :rEh 8 452r 

We note that another  form of w end presentation is possible. It can be presented in terms of special functions 

in the form 

wend -- 2.Tr, EhakP (bei I (ab) - Re L 1 ( v~ ab)) .  
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Here i = q-S-F; beil (z), Ll (z) are the Thomson and Struve functions, respectively. The first of them is tabulated in 

[7 ]. In the absence of tables for these functions their values can be found by the series 

1 ab) 2m+l 
" z~ (2m + 1) 3r 
bei I (ab) = rn v (m + 1) v cos 4 

rn=O " 

m=0 F(m+23--)F(m+ 5) cos 
~ ( m +  1) 

2 

Therefore, expression (9) is in fact reduced to the sum of two known series for special functions. 

Using the obtained notions w b and w end, we have the following formula 

b end 
W = W  + W  

for the calculation of radial displacements. 

We dwell now on the results of calculations. Table 1 gives the dimensionless values of tangential forces 

Tj = - p - 1 R T  and bending moments G1 = P-IGJ �9 They are calculated at R / h  ffi 400, v = 0.3, and different values 

of the parameters a and k. The calculation shows that, in spite of the increase in the total external loading, the 

internal force factors decrease with an increase in the number of planes. This is especially noticeable at relatively 

large radii of circular loaded regions. We note that the accuracy of the constructed solutions and, correspondingly, 

the numerical results given in the table does not differ from the accuracy of the solutions obtained earlier [3, 4 ] 

for the cases of loading shells in square planes into which the considered circular loaded regions can be inscribed. 

This accuracy is characterized in the cited works in detail. 
The work is carried out thanks to Grant No. 2J300 of the International Scientific Foundation and Russian 

Fundamental Research Fund. 

N O T A T I O N  

R, h, radius and thickness of shell; E, v, elasticity modulus and Poisson coefficient of shell material; p, P, 

intensity of outer pressure and force applied to one circular region; k, number of radial loads uniformly distributed 

along contour; x, longitudinal coordinate; a = x / R ,  fl, dimensionless longitudinal and circumferential coordinates; 

r, radius of circular region carrying load P. Subscripts and superscripts: 1, 2, indicate longitudinal and 

circumferential direction, respectively; b and end indicate basic state and end effect, respectively; m, n, integer 

indices of summation. 

R E F E R E N C E S  

~ 

2. 

. 

4. 
5. 

. 

. 

P. M. Velichko, Theoretical and Applied Mechanics [in Russian ], Vyp. 6, Kiev-Donetsk (1975), pp. 66-74. 

P. M. Velichko, V. K. Khizhnyak, and V. P. Shevchenko, in: Proc. 10th All-Union Conf. on the Theory of Shells 

and Plates, Vol. 1, Tbilisi (1975), pp. 31-41. 
B. V. Nerubailo, I. F. Obraztsov, and V. P. Ol'shanskii, PriM. Mat. Tekh. Fiz., No. 6, 15-25 (1988). 

B. V. Nerubailo, Local Problems of Strength of Cylindrical Shells [in Russian ], Moscow (1983). 

I F. Obraztsov, B. V. Nerubailo, and I. V. Andrianov, Asymptotic Methods in Constructional Mechanics of 

Thin-Wall Designs [in Russian ], Moscow (1991). 
I. S. Giradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian ], Moscow 

(1971). 
S. Lukasevich, Local Loads in Plates and Shells [in Russian ], Moscow (1982). 

819 


